Modifications: Stapled Peptide Synthesis and Special Amino Acids

Services & Products




Get published in Nature

Modifications: Stapled peptide synthesis and special amino acids

peptide synthesis Quote

LifeTein offers stapled peptide synthesis and special amino acids and modifications, including Fluoromethylketone (FMK), chloromethylketone (CMK), N-methyl amino acids, unnatural amino acids, acetyl-lysine, beta-alanine, aminobenzoic acid, amidation, acetylation, Abu, citrulline, Acm, dimethyl-lysine, hydroxy-proline (Hyp), methyl-lysine, mercaptopropionic acid, nitro-tyrosine, norleucine (Nle), pyro-glutamic acid (Pyr), carbobenzoxyl (Z), succinic acid, and sulfurylation.

LifeTein offers synthetic peptides with amino acids enriched in 13C, and/or 15N. They are similar to their native peptides in terms of chemical, physical properties and biological activities. These peptides are used to study protein interactions, and post translation modifications such as ubiquitination and phosphorylation.

Peptide stapling is a strategy for constraining short peptides in an alpha-helical conformation. LifeTein's stapling is carried out by covalently linking the side-chains of two amino acids, thereby forming a peptide macrocycle. The stapled peptides can be used for intracellular drug targets because stapling can increase the target affinity and proteolytic resistance.

Peptide synthesis: Stapled Peptide Synthesis

N-Methyl Amino Acids

N-methyl α-amino acids are important building elements of many naturally occurring antibiotics. N-methyl amino acids are known to increase pharmacokinetically useful parameters such as membrane permeability, proteolytic stability, and conformational rigidity. Most peptides can be hydrolyzed easily by digestive enzymes, or are poorly absorbed through the intestine, resulting in poor oral availability. The substitution of N-methyl amino acids can increase peptidase stability and enhance intestinal permeability.

LifeTein's methods for the preparation of N-methyl amino acids and their N-protected derivatives include the direct alkylation of Na-Boc or Cbz protected amino acids, the reductive methylation of N-benzyl amino acids followed by hydrogenolysis, or the reduction of N-Fmoc-oxazolidinones or methylol derivatives with triethylsilane in TFA. However, amino acids with reactive side chains could be difficult to handle. Therefore, different strategies of side chain protection or assembly should be adopted for each amino acid to guarantee successful synthesis.

Peptide synthesis: N Methyl modifications

  • {Cys(Me)}, SMC
  • {ADMA},{Arg(Me)2} asymmetrical
  • {SDMA},{Arg(Me)2} symmetrical
  • {Arg(Me)}
  • {Thr(Me)}
  • {Ser(Me)}
  • {Lys(Me)}
  • {Lys(Me2)}
  • {Lys(Me3)}
  • {L-1-Me-Trp}
  • {L-2-Me-Trp}
  • {D-2-Me-Trp}
  • {Tyr(Me)}
  • {Tyr(Et)}
  • {D-Tyr(Et)}
  • {Orn(Me)3}
  • {N-Me-Gly}, Sar
  • {N-Me-Ser}
  • {N-Me-Tyr}
  • {N-Me-Thr}
  • {N-Me-Asp}
  • {N-Me-Glu}
  • {N-Me-Ala}
  • {N-Me-Phe}
  • {N-Me-Leu}
  • {N-Me-Ile}
  • {N-Me-Val}
  • {N-Me-Met}
  • {N-Me-Nle}
  • {N-Me-Nva}
  • More...

Stapled Peptide Synthesis

The stapled peptides are protein fragments chemically locked into an α-helical shape. Helix stabilization by cross-linking had been shown previously to dramatically increase the helicity and potency of α-helical peptides. The stapled peptides can selectively target only one of a closely related family of proteins. They are a promising class of alpha-helix mimetic inhibitors designed to be resistant to degradation, to penetrate cell membranes, and to bind tightly to disease target proteins.

Peptide synthesis: Stapled peptide synthesis magic bullet

Unusual amino acids incorporated into a peptide can:

  • Improve receptor binding and selectivity due to reduced backbone flexibility
  • Increase in vivo half-life by inhibiting hydrogen bonding
  • Enhance transport across cell membranes or diffuse across the blood-brain barrier

Special amino acids

  • {Cys(Cam)}
  • {D-Cys(Cam)
  • {Cys(Acm)}
  • {Cys(tBu)}
  • {Cys(StBu)}
  • {Cys(Nitosothiols)}
  • {Cys(Pyrene-Maleimide)}
  • {Gamma-Glu}
  • {D-Gamma-Glu}
  • {Beta-Asp}
  • {D-Beta-Asp}
  • {Met(O)}
  • {D-Met(O)}
  • {Lys(Ac)}
  • {Ac-Lys}
  • {Lys(Dde)}
  • {Gly(allyl)}
  • {D-Gly(allyl)}
  • {Cpg}, Cyclopentylglycine
  • {Tle}
  • {Ser(Octanoic acid)}
  • {Ser(Lipoic acid)}
  • {D-Ser(Octanoic acid)}
  • {3-Ala(2-thienyl)-OH}
  • {3-Ala(3-thienyl)-OH}
  • {Aib}
  • {Abu}
  • {D-Abu}
  • {Hyp}
  • {Phg}
  • {D-Phg}
  • {Nva}
  • {D-Nva}
  • {Nle}
  • {D-Nle}
  • {Cit}
  • {D-Cit}
  • {Orn}
  • {D-Orn}
  • {Pen}
  • {D-Pen}
  • {Cha}
  • {D-Cha}
  • {Chg}
  • {D-Chg}
  • {Dab}
  • {Dap}
  • {Pra}
  • {D-Pra}
  • {Allo-Thr}
  • {D-Allo-Thr}
  • More...
  • Biotin (N terminus)
  • DeThioBiotin
  • EDBiotin (C terminus)
  • Lys(Biotin) (middle)
  • Lys(Biotin) (C terminus)
  • Lys(LC-Biotin) (middle)
  • Lys(LC-Biotin) (C terminus)
  • Lys(Biotin) (N terminus)
  • Biotin-LC (N terminus)
  • Orn(Bio)
  • -NH-PEG3-Bio
  • FITC (N terminus)
  • EDFITC (C terminus)
  • Lys(FITC) (middle)
  • Lys(FITC) (C terminus)
  • Lys(FITC) (N terminus)
  • FITC-LC (N terminus)
  • 5-FAM (N terminus)
  • 6-FAM (N terminus)
  • ED5-FAM (C terminus)
  • Lys(5-FAM) (middle)
  • Lys(5,6-FAM)
  • Lys(5-FAM) (C terminus)
  • Lys(5-FAM) (N terminus)
  • 5-FAM-LC (N terminus)
  • Dansyl (N terminus)
  • EDDansyl (C terminus)
  • Lys(Dansyl) (middle)
  • Lys(Dansyl) (C terminus)
  • Lys(Dansyl) (N terminus)
  • Dansyl-LC (N terminus)
  • TAMRA (N terminus)
  • 5(6)-TAMTA-
  • EDTAMRA (C terminus)
  • Lys(TAMRA) (middle)
  • Lys(TAMRA) (C terminus)
  • Lys(TAMRA) (N terminus)
  • TAMRA-LC (N terminus)
  • Lys(Dnp) (middle)
  • D-Lys(Dnp) (middle)
  • Dab(Dnp) (middle)
  • Dap(Dnp) (middle)
  • EDDnp (C terminus)
  • MCA (N terminus)
  • Lys(MCA) (middle)
  • Lys(MCA) (C terminus)
  • Lys(MCA) (N terminus)
  • 3-Indolylacetic acid (N terminus)
  • Cys(Npys) (N terminus)
  • PyBA- (N terminus), 1-pyrenebutyric acid
  • Lys(PyBA)
  • Fa- (N terminus), 3-[2-2furyl]acrylic acid
  • Rhodamine B- (N terminus)
  • Lys(Rhodamine B)
  • More...

Please click here to get a peptide synthesis service quote now!

                        peptide synthesis Quote