Peptides Fold and Self-Assemble on Graphite-Water Interfaces

J. Chem. Inf. Model. 2022, 62, 17, 4066-4082

The concept of self-assembling peptides is a promising front where construction of devices can be achieved through a single molecule. While the outcome is enticing, the means to reach a consistent outcome are complex to say the least. Dozens of factors go into how a peptide may self-assemble and fold, with the most important being the sequence itself. While this can be handled by careful screening and simulations, the interface at which this folding occurs becomes more important to consider at well. Researchers looked to test how specific peptides fold and self-assemble on graphite-water interfaces, where a number of factors give this method the advantage over doing so in free solution.

Graphite helps peptides self fold into conformations

The group studying this phenomenon claimed that the folded conformations of the peptides were stable over a variety of temperatures when observed over graphite. They point out that it is due to the peptide backbone aligning with the zigzag directions of the graphite plane, thus allowing the conformations to occur more favorably from the intermolecular hydrogen bonds of the molecule. Atomic force microscopy revealed these theories to be true beyond initial simulations as well.

The team believes the design principles displayed in these experiments could be of great use in future iterations of self-assembling peptide engineering. The thermodynamically favored self-assembly with the use of a graphite-water interface shows promise as a medium for even more complex molecular devices in the future, a future LifeTein is looking forward to being a part of.

Justin Legleiter, Ravindra Thakkar, Astrid Velásquez-Silva, Ingrid Miranda-Carvajal, Susan Whitaker, John Tomich, and Jeffrey Comer
Journal of Chemical Information and Modeling 2022 62 (17), 4066-4082
DOI: 10.1021/acs.jcim.2c00419

The Nobel Prize in Chemistry 2022 awarded to Carolyn R. Bertozzi, Morten Meldal, and K. Barry Sharpless for their outstanding work with Click Chemistry

The Nobel Prize in Chemistry 2022 awarded to Carolyn R. Bertozzi, Morten Meldal, and K. Barry Sharpless for their outstanding work with Click Chemistry
Peptide Click Chemistry

The Nobel Prize in Chemistry 2022 awarded to Carolyn R. Bertozzi, Morten Meldal, and K. Barry Sharpless for their outstanding work with click chemistry, a well-deserved honor for developing a vital and straightforward technique in modern chemistry. Barry Sharpless, with this as his second Nobel Prize in Chemistry, and Morten Meldal independently presented the idea of click chemistry over twenty years ago. The reactions involved are highly versatile and can be performed under a multitude of conditions, making the method incredibly efficient and applicable to many fields. In a perfect example, Carolyn Bertozzi, who was jointly awarded this Nobel Prize, utilized the principles of click chemistry to present bioorthogonal chemistry, click reactions that take place within living organisms without disrupting the normal chemistry of the cell. Since its inception, click chemistry has had its influence explored across many other facets of chemistry, including very useful applications in peptide synthesis.

LifeTein frequently uses this CuAAC reaction in its oligonucleotide-peptide conjugation service. Such reactions would not be nearly as feasible without the simple answer of click chemistry, as linking large and functionalized molecules like peptides and oligonucleotides is a very challenging task otherwise. With this, LifeTein is able to provide DNA-peptide conjugates and RNA-peptide conjugates for cell screening and in vivo studies with ease.

Congratulations again to Carolyn R. Bertozzi, Morten Meldal, and K. Barry Sharpless on their joint award for The Nobel Prize in Chemistry 2022, the field wouldn’t be anywhere near where it is today without click chemistry.

Our Click Chemistry Products and Services:

Custom Oligo-peptide Conjugate Service Using Click Chemistry

Custom Pegylation Service Using Click Chemistry