Rabbit Polyclonal Anti-gM and Anti-gN Antibodies Using Synthetic Long Peptides

Human cytomegalovirus (HCMV) is currently a major cause of congenital disease in newborns and organ failure in transplant recipients. Various vaccine strategies have been developed, including live attenuated, recombinant viral proteins, dense bodies, vector vaccine subunit, or synthetic peptide epitopes. The rabbit polyclonal anti-gM and anti-gN antibodies were elicited by vaccinating animals with synthesized peptide sequences of gM (1-13aa and 345-372aa) and gN (61-101aa). Animal immunization and sera collection were performed at Lifetein, LLC (Hillsborough, NJ, USA). The sera were affinity-purified by its corresponding peptides.

These formulations have been extensively tested using different animal models and have shown promising immunogenicity and protective efficacy. Some of these strategies have already progressed to clinical trials with humans. The study was studied by Vaccine Analytical Research Development and Vaccine Process Development Merck & Co., Inc., Kenilworth, NJ, USA.

Synthetic Long Peptides

FRET peptide helped researchers identify a small molecule drug candidate

LifeTein FRET peptide helped researchers identify a small molecule drug candidate, DMA-135, against Enterovirus 71 (EV71), a virus that causes foot-to-mouth disease with no FDA approved drugs.

The Tat-derived FRET peptide, (5-FAM)-AAARKKRRQRRRAAA-Lys(TAMRA), from LifeTein, binds strongly to the SLII (Stem Loop II) of Enterovirus 71 (EV71) with a dissociation constant Kd of 24.5 +/-4.7 nM. It has been recently used in the fluorescent indicator displacement assay (FID assay) and helped to identify a potential drug candidate, DMS-135, from the small molecule library, capable of internal ribosome entry site (IRES) targeting to block viral replication.

For the FID assay, when the peptide is bound to RNA, FRET is facilitated, allowing for excitation of FAM (485nm) and emission detection from TAMRA (590nm). When the small molecule drug candidate displaces the peptide from the RNA (SLII) secondary structure, the FRET is disabled, and TAMRA is not fluorescent. Such displacement and fluorescence change allow quantification of the binding affinity of the small molecules on the target RNA.

The peptide and its FID assay may prove generally useful in screening and identifying small molecules for viral RNA binding and inhibition.

SARS-CoV-2 (2019-nCoV) vaccine

SARS-CoV-2 (2019-nCoV) peptide vaccine
Covid nasal spray vaccine: synthetic peptides

The SARS-CoV-2 virus (a.k.a. 2019-nCoV; disease: COVID-19) is responsible for the plague year of 2020. The Pfizer-BioNTech and Moderna mRNA vaccines have now been approved for emergency use and more are coming down the pipeline.

The best vaccine should be high safety, low cost, and ease of production and administration. This paper described an interesting citizen-science vaccine based on synthetic peptides.

https://radvac.org/wp-content/uploads/2020/07/White-Paper-SARS-CoV-2-vaccine-ver-2-3-2.pdf

Synthetic peptide synthesis provides the freedom to design epitopes of sufficient length for immunogenic stimulation but is predicted not to trigger these serious side effects. Synthetic peptides are inexpensive and can be made to order quickly. Many simple linear epitopes can be generated without special conformational constraints. The peptide antigens can be delivered by nanoparticles intranasally.

The following peptide sequences were chosen as self-administered vaccines at about 5 to 7 micrograms of each peptide per dose of vaccine.

  1. Spike 436-460, a.k.a. Spike1, NSNNLDSKVGGNYNYLYRLFRKSN
  2. Spike 462-476, KPFERDISTEIYQAd
  3. Spike 478-502, kPCNGVEGFNCYFPLQSYGhQPTNG
  4. Spike 550-574cir, cgLTESNKKFLPFQQgGRDIADTcD
  5. Spike 375cir, cSrdYNSASFSTFKsYGVSPTKcND
  6. Spike 522cir, CGPKKSTNLVKNKsVNFNFNcd
  7. Spike 804-820cir, cILPDPSKPSKRSFcgD
  8. Spike 802-823cir, FSQcLPDPSKPSKRSFcEDLLF
  9. Orf1ab 1544-1564cir (non-circularized), cFHLDGEVITFDNLKTLLSLREct
  10. Spike 462-501, KPeERDgSTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTN

Order your testing sample peptides from here: https://www.lifetein.com/peptide-product/peptide-vaccine-testing-samples-p-11049.html